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ABSTRACT
This paper presents an approach for modeling multi-device
user interactions, based on task models. We use Concur-
TaskTrees (CTTs) as a domain-specific language, which we
extend here by a labeling mechanism to model multi-device
interactive applications. While CTTs are used to specify
temporal and causal relations between tasks, we add opera-
tors to specify the device mapping in a flexible and expres-
sive way. The main novelty is the introduction of the two
new operators, Any and All, to specify if a task should be ex-
ecuted on any or on all of a set of devices. We show that this
is applicable in scenarios of connected, smart devices where
a task can be executed on a multitude of devices. We present
formal semantics for our extension of CTTs as well as a tool
chain based on the Qt toolkit for generating code for dis-
tributed UIs. This includes a mapping from high-level tasks
to concrete UI controls and a distributed execution model
based on state machines. The new concepts are validated in
several case studies.

Keywords
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1. INTRODUCTION
This paper presents an approach for modeling multi-device

user interactions. For several years we have observed a
paradigm shift in device and software usage scenarios. In-
stead of just having a single device for performing input and
output activities for an application, we see that users tend
to interact with a system via multiple devices. For instance,
users may control a TV via a remote control, a mobile device
like a smartphone or via the device itself. Hence, there is
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considerable interest in multi- or cross-device interfaces, as
indicated in a recent workshop on the topic [18]. Several re-
searchers have considered such “multi-device applications”,
which connect multiple devices to work collaboratively at
the same time, e.g. [3, 27].

In the context of user interaction modeling, ConcurTask-
Trees (CTT) are a common technique to model the flow of
activities performed to reach a goal on an abstract level [20].
Task models can be seen as domain specific languages [25],
which describe relations between tasks in a hierarchical way,
e.g. sequences of tasks, tasks disabling other tasks or con-
current execution. Such task models can be translated into
a more verbose representation with parallel and hierarchi-
cal state machines, as shown in [31]. In order to cope with
different devices, several approaches exist to specify the de-
ployment of user tasks to devices [24], mainly by simple
annotations on the models.

In this paper, we cover the case where the assignment of
tasks to devices occurs dynamically during runtime, which
is not possible with current CTT-based approaches. This
assumes that a user task can be executed on one of sev-
eral devices, or possibly on multiple devices. As an exam-
ple, consider a connected microwave which can be controlled
from the usual panel with buttons on the device, but also
via a mobile device using an application. In this example,
some operations can be executed on any of the devices, e.g.
starting the microwave, while others must be executed on a
specific device, e.g. opening the door. Further, it could be
desirable to execute some tasks on all devices, e.g. show-
ing the operational status of the microwave or raising some
alarms.

In addition, there can be dependencies in the assignment
of devices to tasks, e.g. starting an operation on a device
implies that subsequent tasks must also be executed on this
device. For instance, when setting the cooking timer, we
would not expect that the minutes are set on the mobile and
the seconds on the microwave itself. On the other hand, if
we configure a more complex cooking procedure on one spe-
cific device, we might still want to express that the user can
cancel the cooking process on some other device at any time.
This coordination of tasks on multiple devices is mentioned
as a main issue for cross-device user interfaces in [21]. Here,
we address this both on the modeling and also on the exe-
cution level by our tool chain and execution model.

To model such multi-device user interactions, we intro-
duce a multi-device extension for CTTs, which we call MCTT
(Multi-device CTT). Contrarily to the existing CTT mech-
anism, these multi-device extensions not only specify how



tasks can be mapped to devices, but also express the rela-
tions of the involved devices in the context of a given task or
task configuration. Thus, the new multi-device extensions
add a new spatio-temporal dimension to the CTT domain,
while the original CTT operators express the relations be-
tween tasks.

In more detail, we introduce CTT-like operators and their
corresponding semantics to specify that tasks can either be
executed on one, several or all of the available devices. Com-
pared to device mappings of tasks as described in existing
work, we treat the new device operators as “first class cit-
izens” like any other CTT operator. Thus, we can specify
device mappings not just for single tasks, but for whole sub-
trees in CTTs. For instance, consider a cooking program on
a microwave that includes several steps, which must be exe-
cuted on exactly one of a set of devices. Using MCTTs, we
can specify this by the operator Anymi,mo to state that the
cooking program can be executed on either the microwave
(mi) or the mobile device (mo). However, if a specific step
in the CTT should be executed on the microwave exclu-
sively, e.g. closing the microwave door, we can specify this
by labeling the corresponding task with Anymi. This can be
seen as an exception to the specification of a device mapping
on the whole tree and must be considered when executing
the MCTT. In the existing literature, there is little work on
such dependencies. Only the work in [5] covers the concept
of delegation, which is a specific case of a dependency.

The focus of our approach lays on UI interaction tasks
which can be executed on different devices. In general, the
same abstract interaction task can be implemented differ-
ently on different devices, see e.g. [22]. Our goal is to spec-
ify the user interaction on a high level, and then map it
to different UI elements, depending on the device capabil-
ities. Consequently, we also present a tool chain based on
the well-known Qt toolkit, which creates distributed state
machines that are tailored to specific devices. It includes a
mapping from high-level tasks to concrete UI controls and
a distributed execution model based on distributed but syn-
chronized state machines. Furthermore, this requires dy-
namic coordination of the tasks selected at runtime.

The remainder of this paper is as follows. In the next
sections we introduce CTTs and the MCTT extension, in-
cluding the semantics. The specifications have been im-
plemented in a tool chain, including a distributed execu-
tion model, which is presented in Section 4. We also in-
cluded a technique to map these generic, multi-device tasks
to device-specific UI controls. An example of how to specify
MCTTs and develop (simulated) devices which employ our
techniques is provided in Section 5.

2. MULTI-DEVICE TASK MODELS
In order to introduce the concept of multi-device CTTs,

we first recap task models and the CTT notation. Tasks are
activities that have to be performed to reach a goal, which in
turn can be described as a desired modification of the state
of an application or an attempt to retrieve some information
from an application [20]. Task models are usually used for
design, evaluation and documentation purposes, but in the
more recent past, they have also been employed to derive
system specifications, particularly user interfaces [1, 29, 11].

The question of how to represent task models has lead
to several proposals for task model notations. ConcurTask-
Trees have emerged as one of the most widely used technique

Table 1: Overview of CTT operators and the MCTT exten-
sions.
Operator Symbol Definition
Ch(α1, α2) [] Choice: One of the two

choices is taken at run time.
Co(α1, α2) ||| Concurrent: CTTs α1 and

α2 are performed concur-
rently, with any interleaving
of sub-tasks.

Di(α1, α2) [> Disabling: The CTT α1 is
executed and can be inter-
rupted at any time by α2, af-
ter which the execution con-
tinues in α2.

En(α1, α2) >> Enabling: The CTT α2

starts after the CTT α1.

MCTT Extension
Anyc1,...,ci(α) Any(. . .) Any: The CTT α is exe-

cuted on one of the devices
c1, . . . , ci.

Allc1,...,ci(α) All(. . .) All: The CTT α is exe-
cuted on all of the devices
c1, . . . , ci.

Figure 1: Example of labeling tasks

for this purpose.
Models in CTT notation describe a set of possible se-

quences of basic tasks, which can be executed to achieve
the overall goal [1]. The CTT notation defines four types
of tasks [19]: User tasks are cognitive/perceptive and don’t
require interaction with the system. Interaction tasks in-
volve user interaction, e.g. providing inputs or clicking a
button. Application or system tasks are performed by the
system without any additional user interaction. Finally, ab-
stract tasks refer to complex tasks which have more concrete
subtasks.

Table 1 shows the CTT operators used throughout this
work from highest to lowest priority, including the textual
notation as well as the symbols used in the graphical nota-
tion. For the purpose of this paper, we only use a subset of
the CTT notation which consists of some basic CTT oper-
ators. We expect that the presented concepts can easily be
extended to other operators.

2.1 Multi-device CTTs
Multi-device CTTs (MCTTs) extend the CTT notation

in order to execute CTTs on multiple devices. Mainly, we
introduce the two new operators Any and All, which are
called device labeling operators and are used for specifying



Figure 2: Example of labeling of subtrees

devices within a MCTT. These operators primarily attach a
list of device identifiers to a CTT, a subtree within a CTT or
a single task. For graphical representation, we use circles on
the CTTs to denote the labeling operators. As depicted in
Figure 1, we annotate the circles with Any(mi,mo), which
denotes that the labeled sub-CTT is to be executed on any of
the devices. As introduced, mi stands for microwave and mo
for mobile device. This notation easily maps to the operators
shown in Table 1. Note that we use n-ary versions of the
operators for convenience. Further, we use different symbols
for different kinds of tasks. The finger icon indicates an
interaction task (e.g. a user input), while the hammer icon
indicates an application task (e.g. a system or output task).

The operator Any means that the tasks can only be per-
formed on one of the specified devices, while the operator All
specifies that the tasks are executed on all of the specified
devices. The specified devices are indicated by the opera-
tor’s attached device identifier list. In the example of Figure
1, the two interaction tasks “Select Pizza” and “Confirm Se-
lection” can each be executed on any of the two specified
devices. This means that the user can do the first action -
the selection - on one device, and the second action - the
confirmation - the other device. Thus, there may be a con-
text switch (i.e. a switch of devices) between the two user
interactions.

In case we wish to specify that a more complex task con-
figuration takes place on any of the available devices (i.e.
without such a switch of devices), we can label a whole sub-
tree. Figure 2 shows a set of tasks for setting the current
time on a microwave with the sub-tasks “Set Hour”, “Set
Minutes” and “Set Seconds” etc. The following Disabling in-
dicates that the task “ResetTime” may interrupt the time
setting at an arbitrary point during the setup.

By assigning an Any label to this task configuration, we
enable the user to perform the tasks on any of the two de-
vices, but once started on a device, it has to be completed
on the selected device. This shows the expressiveness of our
approach. It allows the specification of device mapping re-
lations for whole sub-CTTs with corresponding execution
semantics, which is not possible in prior approaches.

The All operator means that a CTT is to be executed on
all of the specified devices. An example can be found in Fig-
ure 3, where an alarm can be configured on any of the two
devices, but the alarm itself must take place on all devices.
The All operator might typically be used for output actions
(like alarms or notifications), but also other applications are
possible when the same task has to be executed on multiple
devices. A possible application might be some kind of bar-

Figure 3: Execution of tasks with multiple labels

rier or synchronization point, which must be reached by all
involved devices.

2.2 Exceptions in subtree labelings
Since Any and All can be applied to both tasks and whole

subtrees, we can express more complex MCTTs by nesting
these device operators. For instance, we might want to spec-
ify that all tasks in a CTT shall be performed on any of two
devices, but some specific tasks in this CTT shall be exe-
cuted on all devices.

Figure 4 shows such an example of cooking a pizza, which
can be controlled either on the microwave or on the mobile.
Yet the final notification must be shown on both devices.
This All operator can be seen as an exception to the outer
specification of Any.

Figure 4: Exception of the labeling of subtrees

To illustrate the concept of device labels, we show a bigger
task configuration integrating the above examples related
to cooking on microwaves. In Figure 5, the MCTT model
shows a use case of configuring a microwave. The model dis-
tinguishes between manual configuration and the selection
of predefined recipes. For the latter case, we assume that se-
lection of the pizza and the confirmation take place on one
of the two devices. For the manual configuration option,
several steps are needed, where the device can be selected
individually for each interaction. Thus, it is possible to per-
form the tasks on one device, or change the device during
this sequence.

3. OPERATIONAL SEMANTICS OF MCTTS
In the following, we introduce the behavior of our multi-

device CTTs by semantical rules. The goal of device labeling
is to retain the expressiveness and simplicity of the CTT
notation, but also support the development of multi-device
applications on a higher level of abstraction.

Mainly, we have to define semantics for the two new rela-
tional operators named Any and All. When multiple device



Figure 5: Example of MCTT for configuring cooking with a
microwave

labels are assigned to a task or a set of tasks, Any means the
tasks can only be performed on one of the defined devices
at the same time. More precisely, one of the defined devices
is selected at runtime for executing the task or task tree.
All on the other hand enables the tasks to be executed on
multiple devices.

To specify the semantics, we use the approach of a rewrit-
ing logic [15] which defines the operational behavior by rewrite
rules. The major reason to use rewrite rules is to explicitly
denote the task execution. Further, they allow us to easily
apply simplification rules on the task tree. For instance, we
will push the All and Any operators towards the leaves of
the tree by means of rewrite rules.

We first define the semantics of well-known CTT operators
and extend them with device labels which specify the devices
that are associated to tasks. In the following, (sub) CTTs
are denoted as α1 and α2 respectively and device labels are
denoted ci, where i ∈ N. We also use a for atomic tasks
(i.e. leaves). We write emCTT for the empty CTT, which
is typically the result of a complete execution.

We specify the operational semantics for MCTT device
labels via execution steps of the following form:

α1
c(a)−→ α2

This denotes that a task a is executed on the device which is
represented by the device label c. The semantics is defined
for MCTTs where the outermost operator is Any or All, to
ensure all tasks in the MCTT have a device mapping.1

Rewrite rules of the form

α1−→α2,

denote an internal simplification rule on CTTs without exe-
cuting a task. We use this later to define Any and All. Fur-
ther, we assume that rules forming an execution step with
some task are applied in an outside-in fashion, i.e. starting
at the top of the tree. Simplification rules may be applied in
other places to facilitate the application of these execution
steps.

A complete execution ends in the empty CTT by applying
rewrite rules, e.g..

α1
c1(a1)−→ . . . −→ . . . α2

c2(a2)−→ . . .
ck(ak)−→ emCTT

As long as we do not have a looping or recursion operator
in the CTTs, the executions will always terminate. We will
add a repeat operator later for the examples.

1During execution, this may change as All and Any are
pushed inside.

3.1 Semantics of CTT operators
As a prerequisite for our new device labeling operators,

we specify the semantics of the conventional CTT operators
first.

For a Choice operator we use the following rule:

Ch(α1, α2) −→ αi

for both i = 1 and i = 2. This means that different execu-
tions are possible for one CTT, each reflecting one possible
behavior. Formally, the rules are not confluent.

For the Enabling operator we have a sequential execution
of two CTTs:

En(α1, α2)
c(a)−→ En(α′

1, α2) if α1
c(a)−→ α′

1

En(emCTT, α2) −→ α2

The Concurrent operator is defined by permitting an arbi-
trary interleaving of executions on the concurrent sub-CTTs:

Co(α1, α2)
c(a)−→ Co(α′

1, α2) if α1
c(a)−→ α′

1

Co(α1, α2)
c(a)−→ Co(α1, α

′
2) if α2

c(a)−→ α′
2

Co(emCTT, emCTT ) −→ emCTT

The Disabling operator executes the tasks of the first sub-
CTT, until (one of) the first task(s) of the second CTT
occurs. This leads to the following rule:

Di(α1, α2)
c(a)−→ Di(α′

1, α2) if α1
c(a)−→ α′

1

Di(α1, α2)
c(a)−→ α′

2 if α2
c(a)−→ α′

2

Di(emCTT, β) −→ β

3.2 Semantics of the device labeling operators
With the CTT operators defined as rewrite rules, we can

present the semantics of the Any operator:

Anyc1,...,ci(α)

denotes that the CTT α shall be executed on exactly one
of the devices c1, . . . , ci. For example, if α is an interaction
task (i.e. an input action) labeled with Any, this means that
the task is performed on exactly one of the defined devices.

Next, the semantics of the All operator is defined:

Allc1,...,ci(α)

denotes that the CTT α shall be executed on all of the de-
vices c1 to ci. Likewise, if α is an interaction task labeled
with All, the task’s associated input action must be per-
formed on all defined devices. An example could be to “con-
nect a cable” on all devices before communication can start.
Note that for one device label, Any and All are equivalent.

Now, consider the following operational semantics for Any
on basic tasks:

Anyc1,...,ck (a)
ci(a)−→ emCTT

where 1 ≤ i ≤ k and a is a basic task. This means that for
task a, an arbitrary ci can be chosen for its execution.
Similarly, the operational semantics for All on basic tasks

is as follows:

Allc1,...,ck (a)
ci(a)−→ Allc1,...,ci−1,ci+1,...,ck (a)

Allc(a)
c(a)−→ emCTT



This expresses that the basic task a is executed on all de-
vices. Note that the order in which the distinct devices
execute a is irrelevant.

Next, the effects and semantics of Any and All applied to
CTT operators are defined. The main idea is to push the
Any and All operators inside, towards the leaves of the CTT,
where basic tasks can be executed on the specified devices2.
For an Any-annotated Choice, the following semantical rule
applies:

Anyc1,...,cn(Ch(α1, α2)) −→ Anyci(αk)

where k ∈ {1, 2}. Consequently, the semantics of an Any-
annotated Enabling operator is as follows:

Anyc1,...,cn(En(α1, α2)) −→ En(Anyci(α1), Anyci(α2))

Note that both α1 and α2 are labeled with the same device
label. This indicates that the device that was selected for
the execution of α1 must also be used for the execution of
α2.
The same semantical rule applies for the Any-annotated

Disabling operator:

Anyc1,...,cn(Di(α1, α2)) −→ Di(Anyci(α1), Anyci(α2))

Consequently, for the semantics of the Concurrent operator,
the following rule applies:

Anyc1,...,cn(Co(α1, α2)) −→ Co(Anyci(α1), Anyci(α2))

The semantical rule for the All operator is generic for all
CTT operators. Basically, All is pushed inside the CTT α:

Allc1,...,cn(Ch(α1, α2)) −→ Ch(Allc1,...,cn(α1),

Allc1,...,cn(α2))

Allc1,...,cn(En(α1, α2)) −→ En(Allc1,...,cn(α1),

Allc1,...,cn(α2))

Allc1,...,cn(Di(α1, α2)) −→ Di(Allc1,...,cn(α1),

Allc1,...,cn(α2))

Allc1,...,cn(Co(α1, α2)) −→ Co(Allc1,...,cn(α1),

Allc1,...,cn(α2))

Finally, conflicting device labeling operators must be con-
sidered (e.g. Any immediately followed by All or vice versa).
In this case, preference is always given to the most inner
device labeling operator. Consequently, this leads to the
semantical rule

Anyc1,...,cn(Allc
′
1,...,c

′
m(α)) −→ Allc

′
1,...,c

′
m(α))

as well as

Allc1,...,cn(Anyc
′
1,...,c

′
m(α)) −→ Anyc′1,...,c

′
m(α).

3.3 Examples
The following examples illustrate the above rules. The

examples formalize among others the introductory examples
and show how the actual runtime semantics could possibly
look like. Note that there can be a large number of possible
execution orders. However, we only show one (arbitrarily
selected) order.

2We could also use a simpler rule to define Any by just
selecting one device. However, we still need to push the Any
operator to the leaves, as it is only defined for leaves.

The first MCTT configuration is intended to set the time
on a device, but all actions are performed on exactly one of
the devices:

Anyc1,...,ci(En(SetHour,En(SetMinute, SetSeconds)))

This example now reduces as follows:

. . .
k(SetHour)−→ En(SetMinute, SetSeconds)

k(SetMinute)−→ SetSeconds

k(SetSeconds)−→ emCTT

where k ∈ {c1, . . . , ci}.
Next, we show the pizza mode selection and confirmation

on our microwave. We want to specify that a switch of
devices is possible (but not necessary) during task execution:

En(Anyc1,...ci(SelP izza), Anyc1,...,ci(ConfSelection))

This reduces to

. . .
k(SelPizza)−→ ConfSelection

j(ConfSelection)−→ emCTT

for some k and j (k and j might also be equal).
The next example is entering the time, which we want to

be interruptible. However, the interruption should occur on
the same device as the process was started:

Anyc1,...,ci(Di(En(

SetHour,En(SetMinute, SetSeconds)), stopMicro))

this may e.g. execute to

. . .
j(SetHour)−→ Di(En(SetMinute, SetSeconds), stopMicro)

j(stopMicro)−→ emCTT

Note that other executions are possible (even “stopMicro”
not happening at all).

Finally, overruling the device selection, e.g. when prepa-
ration steps may occur on any device, but opening the mi-
crowave must happen on the microwave itself is formulated
as

Anyc1,...,ci(En(En( , . . . , En( ,

. . .Anymicrowave(OpenDoor)) . . .)

and may execute e.g. as follows:

. . .
k(...)−→ . . .

microwave(OpenDoor)−→ . . .
k(...)−→ emCTT

4. TOOL CHAIN IMPLEMENTATION
We have implemented the device labeling mechanism in

a prototype tool chain that allows for the execution of a
model-driven development approach using MCTT task mod-
els.3 The framework covers all steps from designing the
MCTT model to building working device UIs. To execute
the MCTTs, we have developed a translation of MCTTmod-
els into device-specific state machines for each involved de-
vice. Our translation extends the algorithm in [31] from
CTTs to MCTTs and is described in [30]. The actual al-
gorithm is beyond the scope of this paper. The basic idea

3 The tool chain is available from the authors and can be re-
trieved from https://github.com/MultiDeviceCTT/MCTT.



is that the statechart of each device whose label is present
in the label set of an Any or All operator keeps track of all
states and transitions which are actually executed on other
involved devices. This implies that an event that might oc-
cur on any of the defined devices will result in state changes
in all involved statecharts. As a result, the execution of an
Any or All operator happens completely synchronized on
all involved devices. This is mainly achieved by state tran-
sitions that are triggered by events on remote devices and a
well-defined distributed execution model. In the following,
we focus on this model and the tool chain concept which
supports the development.

From a technical point of view, the framework is based on
the well-known Qt framework4 and especially on the QML
scripting language5 which is part of Qt. Our intention is
to provide a rapid-prototyping framework that offers fea-
tures typically available in embedded and mobile devices,
e.g. interaction possibilities (soft- and (emulated) physical
buttons), timers, GUIs and networking. We chose Qt over
other frameworks because it allows us to easily build visually
appealing and interactive user interfaces which are driven by
state machines. Bundled with state machines from the de-
veloped algorithm, this allows for the design of cross-device
scenarios which provide full user interaction and networking
capabilities.

Figure 6 depicts the code generation and system archi-
tecture for multiple devices. A “device” executes a (device-
specific) state machine, displays a GUI and communicates
with other devices as indicated. The devices are connected
to a server (which is denoted as coordinator in Figure 6) via
WebSockets. All application-specific components (e.g. state
machines or GUI glue code) are generated and can be ex-
tended by manually written QML code. The QML parts are
executed by a client runtime, which provides networking and
state machine APIs. The utilized technologies allow system
designers a mostly declarative device description without the
need of writing low-level code or compiling source files.

Figure 6: Overview of State Machine Generation and Dis-
tributed System Architecture

4.1 Implementation Overview
We basically split our prototyping environment into two

main phases. In the first phase (i.e. generation phase), we
generate the device-specific state machines from the MCTT.
In essence, the developed algorithm creates a state machine
for each device label present in the MCTT. The way how
tasks are translated into state machine elements highly de-

4https://www.qt.io/
5http://doc.qt.io/qt-5/qtqml-index.html

pends on the task type. In principle, interaction tasks are
mapped to transitions whereas application tasks are mapped
to states. Further, the algorithm generates additional tran-
sitions which are triggered when application tasks finish ex-
ecution or remote devices are in charge of notifying the cur-
rent local device. Therefore, the state machines also inher-
ently cover communication between the devices. The re-
sulting state machines are executed synchronously on the
corresponding devices and implement the system behavior
specified in the MCTT.

Because a device might only execute a subset of all the de-
fined tasks (due to corresponding labelings in the MCTT),
the algorithm generates state machines which are specifi-
cally tailored to the target device. However, an important
feature of the generated state machines is that each device
is aware of all states and transitions which are actually exe-
cuted on other devices. The structure of the state machines
of the distinct devices might therefore be similar, even if de-
vices do not participate in the execution of a (sub) tree of
the MCTT. As an example, consider that we label a subtree
α of a MCTT with Anyx,y. If we now consider the gener-
ated state machine of a device z, which is not part of the
labeling of α but of another subtree, the state machine will
still have the states and transitions representing α. How-
ever, z will not perform tasks when its state machine is in
one of those states. Instead, this part of z’s state machine
only consists of dummy states and transitions, which ensure
that z is aware of the global system state. Due to proper
selection of the state machine semantics, we thus achieve a
synchronous execution of the state machines on all involved
devices6. Consequently, all events that occur on any of the
defined devices result in state changes on all state machines
simultaneously.

4.2 UI Mapping
Another aspect of the generation phase is the mapping

of tasks to actual device functionality. From an implemen-
tation point of view, a task is a rather abstract element
which does not provide information on how it can be exe-
cuted. Therefore, the framework needs to know which task
is implemented by which device functionality (it may be a
UI control or an internal function). The problem of linking
abstract elements (in this case tasks) to concrete elements
(their implementation) is called the “mapping problem” and
is described in detail in [26]. For our evaluation purpose, we
use amapping file, inspired by the work of [7], which provides
per-device information on the available UI controls and the
task mapping itself (i.e. which task belongs to which UI con-
trol(s)). Further, it defines elements for more fine grained
control over the mappings and action methods which pro-
vide actual device functionality and data to be transmitted
to other devices.

A sample snippet of a mapping file is shown in Figure 7.
It describes the configuration for a device named deviceX.
deviceX has only three UI controls - selectionCombo, con-
firmButton and powerButton. The visible and enabled key-
words are the control’s deactivation policies. These are valid
QML attributes and are set to true or false , depending on
the current state.

The remainder of the file specifies task mappings. taskA,
taskB and taskC are tasks the device should handle. For ex-

6In our implementation, we assume the STATEMATE exe-
cution semantics as described in [6].



[ deviceX ]
c o n t r o l s = selectCombo : v i s i b l e , confirmBtn :

enabled
taskA = confirmBtn . c l i c k e d / selectCombo . currentText

=== ”taskA ”
taskB = confirmBtn . c l i c k e d
taskC = ˆ dev i ce . performTaskC ( cb )

Figure 7: Sample mapping file entry for a device named
“deviceX”.

ample, taskA should be triggered by confirmButton’s click
event, but only if selectionCombo displays the text “taskA”.
This guard is indicated by a slash (“/”). Finally, the task
taskC is associated with the function performTaskC(cb) pro-
vided by the device. These action methods are indicated by a
carat (“ˆ”). The actual implementation of an action method
is up to the system or device designer.

4.3 Distributed Coordination
The second phase in our prototyping framework is the ex-

ecution phase. All communication between the devices is
routed over the coordinator. If an event is generated on a
device (e.g. because the user executes an interaction task),
the device forwards the event to the coordinator, which in
turn broadcasts the event to all other state machines in the
system. Only after each device has received the event, the
device which emitted the event is allowed to process it lo-
cally. If two devices emit events simultaneously, the coordi-
nator decides which event should be broadcasted. Thus, race
conditions can be avoided. Because of the way we generate
the state machines, the event will lead to a state transition
in every state machine. This concept is depicted in Figure 8.

Figure 8: Global View on the System during the Execution
Phase.

5. TV EXAMPLE WITH THREE DEVICES
Based on our implementation, we provide a sample sce-

nario which employs the presented techniques. The scenario
describes a TV, a remote control (abbreviated RC ) and a
smartphone. The idea is to use the smartphone as a sec-
ond remote control. While the RC is a very limited device
which only performs basic tasks, the smartphone should also
provide an extended feature set.

The main goal of this scenario is to show how MCTTs can
be used to implement concurrent tasks on several devices.
Input actions can basically occur on any remote device and
tasks (e.g. switching channels and changing volume) are not

Table 2: Tasks of the TV example scenario.
Task name Description
mute mute TV
performMute perform mute task
volumeUp increase volume
performVolumeUp perform volume increase
channelUp next channel
performChannelUp show next channel
...
standBy actually go to standby
softSwitchOn turn TV on
returnFromStandBy actually return from standby
hardSwitchOff turn TV off with switch
hardSwitchOn turn TV on with switch

mutually exclusive. In the following, the development of the
task model and the device UIs of TV, RC and smartphone
are shown.

5.0.1 Tasks and Task Model
We use the typical basic tasks of a TV and remote control

for our scenario. These include channel switching, adjust-
ing the volume, muting and switching the TV on and off.
The remote devices (RC and smartphone) are intended to
perform the typical input actions like channel up and down
or increasing and decreasing the volume. The TV is in-
tended to be a passive device which performs the desired
input actions. Smartphone and RC are devices with similar
features, but the smartphone provides additional tasks like
directly addressing a channel and a more involved UI.

For the task model to be successfully mapped on the dif-
ferent devices, tasks must be decomposed in an input and
in a performing part. For example, switching to the next
channel requires two actions. First, the task must be ini-
tiated by the RC or smartphone (task channelUp), then it
must be performed by the TV (task performChannelUp).
Altogether, this leads to the task set shown in Table 2.

In order to obtain sensible state machines, the tasks must
be classified as interaction or application tasks. As a rule
of thumb, tasks which are performed by remote devices (RC
or smartphone) are interaction tasks. Tasks that are per-
formed by the TV are application tasks. The only exception
are the tasks hardSwitchOff and hardSwitchOn, which are
interaction tasks performed by the TV.

Combining the tasks into a task tree can be done bottom-
up. First, the decomposed tasks are put together by means
of the Enabling operator, e.g. (channelUp >> performChan-
nelUp). These building blocks are then combined to bigger
task trees. Note that the intended functionality requires the
correct operators. For example, the user must be able to
change the volume even if channels are selected on another
device. On the other hand, switching channels must be pos-
sible even when the TV is muted. Therefore, we use the
Concurrent operator to combine the task trees which de-
fine volume adjustment and muting with the task tree that
defines channel selection.

For the TV to be turned off we introduce a new CTT
operator called Reset. Reset is similar to the Disabling op-
erator. It is a binary operator, whose left subtree α can be
interrupted by the right subtree β at any time during the ex-
ecution of α. The difference is that α is started all over again
when β finished. Also, a new MCTT operator Repeat(α) has



(a) The TV device UI. (b) The remote control UI. (c) The smartphone UI.

Figure 9: Device user interfaces.

been introduced, which defines that the subtree α must be
executed at least once. To be able to iteratively change chan-
nels and volume, the corresponding subtrees are wrapped in
the Repeat operator.

Note that there are two ways to turn the TV off. The first
way is to enable standby mode, which is modeled by means
of the Reset operator. The second way is to turn it off
physically, which - for a real TV - would mean to cut power
supply. Turning the TV off physically can even interrupt the
standby mode. We model this behavior by simply wrapping
the whole task tree into another Reset operator. Its subtree
β consists of an Enabling operator with tasks hardSwitchOff
and hardSwitchOn.

For the MCTT model to be complete, tasks and/or sub-
trees must be labeled with devices. We model all inter-
action tasks (except hardSwitchOff and hardSwitchOn) as
Anyrc,sp. All application tasks are labeled as Anytv. Note
that because the interaction tasks are intended to be exe-
cuted by any remote device, we don’t label whole task trees
but only single tasks. This allows switching devices at any
time (e.g. increasing volume on the smartphone while chang-
ing channels on the remote control).

The complete MCTT model is shown in Figure 12. Due
to lack of space, we use a tree with the textual notation,
not with the above graphical notation. What remains to be
shown are the device user interfaces for TV, smartphone and
RC and task implementation examples.

5.1 TV, Remote Control and Smartphone UIs
The TV can increase and decrease the volume, increment

and decrement the current channel and set a channel di-
rectly. Channel and volume are displayed in “status dis-
plays”, which are simulated LCD screens.

The system has two “off states”, namely a standby mode
and a physical off state. The TV can be physically turned
off and on only by a corresponding (physical) button which
disables the whole system. The TV user interface is depicted
in Figure 9a.

As an example for the TV’s task implementation, the task
standBy is shown in Figure 10. It simply turns off the screen,
enables the standby LED and calls a callback, indicating
that task execution has finished. The callback returns con-
trol to the device’s state machine. The next available steps
are then determined by the state machine and the execu-
tion environment (both local and at remote devices). This
is completely transparent to the system designer and keeps
the implementation simple.

f unc t i on standBy ( cb ){
// turn o f f s c r e en
sc r e en . c o l o r = ”black ”
// enable standby LED
standByLight . c o l o r = ”red ”
// no t i f y that task has f i n i s h e d
cb ( )

}
Figure 10: Implementation of task standBy.

The design of the RC device only covers the basic features
of the TV. These include adjusting the volume, switching
channels, muting the TV as well as turning it on and off
(standby). The feature list is inspired by remote controls
actually available for the elderly [16]7, so this kind of reduced
remote controls is indeed relevant in practice. The RC UI is
depicted in Figure 9b.

Because the RC device does not implement application
tasks, the actual device implementation reduces to just model
the GUI. No additional methods are necessary to implement
the device. All functionality comes purely from the MCTT,
the task mapping (which can be seen in Figure 11) and the
generated state machine.

The smartphone provides the same functionality as the
remote control. However, the smartphone additionally al-
lows setting the desired channel directly. Furthermore, the
smartphone UI is instantly adapted to the available tasks or
completely disabled if a hard turn-off on the TV occurred.
Figure 9c shows the smartphone device UI.

[rc]
_controls = onOffButton:enabled , ...,

muteButton:enabled
volumeUp = volPlusButton.clicked
volumeDown = volMinusButton.clicked
channelUp = chanPlusButton.clicked
channelDown = chanMinusButton.clicked
softSwitchOn = onOffButton.clicked
softSwitchOff = onOffButton.clicked
mute = muteButton.clicked
unmute = muteButton.clicked

Figure 11: Task mapping for the example scenario (remote
control).

6. DISCUSSION
In this section, we discuss our approach and also out-

line some extensions for future work. Regarding CTTs one
7e.g. the “Tek Pal Universal Remote Control”
http://www.bigbuttonremotes.com/remotes-tek-pal.htm
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Figure 12: MCTT model for the example scenario.

question is the notation, and also the scalability in terms
of model size. In the example we can recognize, that even
small cases can lead to large diagrams (see Figure 12). Even
though the example is using only binary CTTs, which in-
creases the size, it becomes clear that some more concise,
graphical notation as in Figures 1-4 with suitable tools sup-
port may be needed.

On the other hand, MCTTs model a complex, distributed
system, resulting in automatically generated state machines
and a generic broadcast communication mechanism based
on events. This has proven to work nicely and takes a way
considerable complexity from the developer. We should note
here that the state machines for the UI must also be able to
display, on all involved devices, which actions are currently
possible on the current device. This is needed to present
the possible actions as soft buttons and requires consider-
able analysis which tasks are executable next. As shown in
[30, 31], this is complex due to the concurrent and disabling
operators, where the currently possible interactions must be
found in multiple leaves of the MCTTs. For scalability of
the models as such, we essentially have the same issues as
in basic CTTs and other modeling languages. For instance,
the work in [10] discusses scalability and modularity, as well
as relation and integration with other UML-based modeling
languages and tools.

Another question is the expressiveness of the concepts.
Our examples have shown that the operators Any and All
can cover quite a wide range of cases. There are however
two extensions which can be useful in practice. One is the
addition of classes of devices, e.g. if several devices with
identical behavior are present. An example would be two
users with the same mobile app controlling the TV. Such an
extension could simply extend the language of the devices to
include classes and instances of devices. In the same line, we
could consider cases where the number of devices changes
over time. We expected that our formalism can easily be
extended to this.

7. RELATED WORK
Task models are mainly used for model based user in-

terface development (MBUID), and many researchers have
investigated how task models support multi-device applica-
tions development in ambient intelligence environments. Pa-
ternò et al. connect web services with CTTs by associated
annotations to develop service-oriented multi-device interac-
tive applications. This approach exploits the web service an-
notation for model transformations at various abstract lev-
els [24]. However, contrarily to our approach, designers have
to design a distinct CTT for each device to connect them
with the web services in order to develop different versions
of the same application on multiple devices.

Besides, Melchior et al. use a distribution graph consist-
ing of a state-transition diagram to distribute UIs to various
devices. In the state-transition diagram, states represent
significant distribution states of distributed user interfaces
and transitions consist of event, condition and action [14].
However, creating a complete distribution graph for bigger
scenarios is not easy and the graph quickly becomes com-
plex. More generally, their approach does not consider dis-
tribution in the task model directly.

Luyten and Clerckx develop an algorithm for transforming
a CTT to a set of ETSs (Enabled Task Sets) and define
semantics for the temporal operators Enabling and Disabling



for the transition [11]. This is similar to the state machines
used here, but does not consider multi-device environments.

Luyten et al. show a task-centered approach to design
ambient intelligent applications. The task distributions are
context-aware by introducing an environment model to de-
scribe the configuration of devices at particular time. This
does however not cover the modeling of depencencies of tasks
in a dedicated language nor the dynamic assignmet [12].

Wurdel et al. present the Collaborative Task Modeling
Language (CTML) which is designed to model actors, roles,
collaborative tasks and their dependency on the domain with
precisely defined syntax and semantics. In order to support
smart environments, CTML employs team modeling and de-
vice modeling modules and it enables designers to specify
tasks for smart environments including device modeling and
other contexts [32]. However, integrating CTML with de-
vice modeling does not concern tasks to be performed on
multiple devices.

In order to reduce the complexity of multi-device applica-
tion development, some researchers have leveraged model-
driven engineering (MDE) methodology to develop multi-
device applications [8, 9]. These do however not address the
multi-device aspects directly.

Other literature on multi-device or distributed user in-
teractions discusses the general concepts of complementary,
redundant or equivalent user interface elements [4, 13]. Our
goal is to formalize typical such patterns as extensions to
CTTs. While other extensions for CTTs permit expressive
constraints and dependencies on tasks [2, 28, 12], we devise
here specific, well defined operators to express the spatial
relations between tasks in a distributed scenario. For in-
stance, with current techniques it is not easily possible to
express that some task has to be executed on all devices, a
single device or on a subset of devices of an overall set of
devices.

Finally, [17, 18, 23] discuss many aspects of cross-device
user interfaces, including migration of a user interface, tim-
ing aspects and adaptation to new devices.

Usually, all these existing approaches handle distribution
issues in more concrete models after defining the task mod-
els. In our opinion, it is however natural to consider the dis-
tribution to devices in task models directly. After distribut-
ing tasks to particular devices, user interfaces or applica-
tions corresponding to the distributed tasks can be mapped
to particular devices. In addition, instead of adding rules
for executing tasks across multiple devices at the concrete
model level, our introduced device labeling mechanism en-
ables designers to define execution of tasks at the early stage.
This decreases the overhead of defining additional distribu-
tion and execution models in later-on, concrete implemen-
tations.

8. CONCLUSION
In this paper, we have presented an extension to task

models, called MCTTs, which adds the dynamic assign-
ment of tasks to an arbitrary subset of devices and speci-
fies the execution semantics of tasks on these device sets.
While CTTs model the temporal and causal relations be-
tween tasks, MCTTs can also specify relations on the map-
ping of tasks to devices. This can be seen as an additional,
independent dimension, compared to the temporal relations
in usual CTTs. We integrate this into one new modeling
language and have defined semantics for it.

The main novelty of the language is the introduction of
the two new operators Any and All, to specify if a (com-
posed) task should be executed on any or on all devices of a
set of devices. We have shown that this is applicable in sce-
narios of connected, smart devices where similar or identical
tasks can be executed on a multitude of devices. Because
we treat these operators as regular CTT operators, we can
place them arbitrarily within the task tree, which especially
allows nested operators. This is useful in case of exceptions,
e.g. when arbitrary devices can be selected for the execu-
tion of a complex task, but some inner task must always be
mapped on a specific device.

Based on the semantics for our extension, we have imple-
mented a tool chain with a mapping to distributed state ma-
chines based on the Qt toolkit. The tool chain includes basic
mechanisms to map high-level tasks to concrete UI controls,
as well as a distributed execution and coordination model.
It has been validated in several case studies and one of them
has been presented in more detail. In summary, we pro-
vide a new approach and tool chain to design multi-device
applications by extending task models in an expressive and
well-defined way.
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[24] Fabio Paternò, Carmen Santoro, Lucio Davide Spano,
and HIIS CNR-ISTI. 2010. User task-based
development of multi-device service-oriented
applications.. In AVI. 407.
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