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Abstract
Recently, AI-generated content (AIGC) technologies have
made remarkable advancements, even achieving superhuman
performance across various domains. However, few previous
studies have investigated its impact on emotion-focused
therapy with artistic content, e.g., music. In this paper,
we conducted an EEG experiment to explore the effects
of generative music on emotion-focused music therapy
based on the ISO principle. This experiment compared
AI-generated and human-created music regarding the changes
in participants’ valence and arousal following negative
emotion induction with the ISO principle adherence and
non-adherence. The results show that generative music, with
its harmonic consistency and simple rhythm, is more effective
in supporting positive emotions and improving temporal lobe
activity. Besides, the therapeutic effectiveness of generative
music adhering to the ISO principle has also been validated.
This study highlights the distinct emotional and neural
mechanisms of AI-generated music, offering valuable insights
into future AI-powered emotion-focused therapy strategies.
Keywords: Music Therapy; AI-generated Music;
Emotion-focused therapy; ISO Principle; EEG

Introduction
Emotion-focused therapy is a critical component of
mental health and well-being, with effective therapeutic
interventions playing a pivotal role in addressing conditions
such as anxiety, depression, and stress-related emotional
disorders (Gross, 2002). Among the various therapeutic
approaches, art therapy has emerged as a powerful medium
for emotional expression and regulation, leveraging creative
processes to facilitate psychological healing (Malchiodi,
2012). Within this domain, music therapy stands out as an
effective modality, utilizing intrinsic emotional and structural
properties of music to modulate affective states (Thaut &
Hoemberg, 2014). Music’s unique ability to evoke and
regulate emotions has been extensively documented, with
evidence suggesting that it can significantly influence both
physiological and psychological responses (Ahmad & Rana,
2015; Saarikallio, 2008).

In music therapy, generative AI technologies hold the
potential to revolutionize therapeutic practices by enabling
the generation of highly personalized and adaptive media
tailored to individual emotional and psychological needs
(Hung et al., 2021; Sun et al., 2024). While it holds
great potential, the role of AI-generated music (AIGM)
in emotion-focused therapy remains largely unexplored.
Specifically, it is unclear whether AIGM can replicate or
even surpass the therapeutic effects traditionally achieved
through human-created music (HMCM), especially within a
well-established music therapy framework - the ISO principle
(Davis, 2008).

Past research has extensively explored the neural
mechanisms of music therapy, particularly for HMCM.
EEG studies reveal distinct brain activity patterns,
such as prefrontal and temporal lobe activation, during
emotion-focused therapy tasks (Altenmüller et al., 2002; Lin
et al., 2010). Features like power spectral density (PSD) and
differential entropy (DE) further serve as reliable markers
of emotional states (Zhang et al., 2019). The ISO principle,
which aligns music sequences with emotional states,
has proven effective in enhancing therapeutic outcomes
(Heiderscheit & Madson, 2015; Starcke et al., 2021).
However, these insights are largely based on HMCM, leaving
a gap in understanding how AIGM influences these neural
mechanisms. Specifically, it remains unclear whether AIGM
elicits similar neural and self-report responses and integrates
effectively into frameworks like the ISO principle. This
gap highlights the need for comparative research to assess
AIGM’s role in emotion-focused therapy.

In this study, we employed a dual-method approach
combining EEG neuroimaging and standardized
psychometric assessments to systematically compare
the effects of AI-generated and HMCM on emotion-focused
therapy. Our results demonstrate distinct patterns in
how these two types of music influence emotional states,
supported by both neural and self-report data. The key
contributions of this work are: (1) establishing the differential
neural and self-report effects of AIGM versus HMCM in
emotion-focused therapy, (2) demonstrating the adaptability
of AIGM to sequential therapeutic frameworks like the ISO
principle, and (3) through acoustic analysis, uncovering the
underlying mechanisms driving the observed neural and
self-report differences between AIGM and HMCM. These
insights advance the understanding of AI-generated media
in therapeutic contexts and provide a foundation for future
research on emotion-focused therapy strategies.

Methods
Materials
Human-created Music HMCM was selected from the
EMOPIA dataset (Hung et al., 2021), which includes 387
piano solo pieces and has undergone cross-validation based
on Russell’s Circumplex Model of Affect. We randomly
chose three pieces from each combination of valence and
arousal conditions to represent both negative and positive
music as experimental materials (Figure 1 A, the procedure
above). The high cosine similarity (99.97%) between the
selected tracks and the original EMOPIA dataset in terms of
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average music features ensures the selection reliability. Each
selected track is one minute long, with some manually edited
for consistency. The neutral tracks, however, were chosen
based on recommendations from psychotherapists.
AI-generated Music In selecting generative music models
for this study, a systematic search was conducted using key
terms such as “generative music models”, “AI-based music
generation”, and “machine learning music generation” in
Google Scholar (Figure 1 B, the procedure below). Based
on the citation and documented performance in various
applications, the following generative music models were
selected: Udio1, Audio Craft2, Suno3, Stable Audio4,
SongR5, Mousai6 and CaiMAP7. To ensure the quality and
relevance of the selected music, we considered factors such
as musical quality as assessed by psychologists and the
duration of the compositions. We excluded models that either
generated music tracks shorter than one minute or produced
audio with significant repetition after extended play, as well
as those that failed to meet the prompt requirements (e.g.,
piano only). As a result, we selected three platforms (Udio,
Suno and Stable Audio), with each platform generating piano
music based on specific prompts. To ensure the effectiveness
of the AIGM, we recruited 155 participants who wouldn’t
participate in the latter experiment. They were asked to rank
the music based on the emotional responses they personally
experienced. The ranking was done according to four distinct
valence-arousal conditions: 2 (valence: high, low) × 2
(arousal: high, low). Forty data entries were excluded due to
incorrect responses on trap questions, leading to 115 available
data. Based on the rankings, we selected the three tracks from
each emotional condition that most effectively conveyed the
intended emotion, resulting in a total of nine music tracks.
Emotion-inducing Movies The movie clips, validated in
culturally relevant studies (Deng et al., 2017; Ge et al., 2019),
were employed to establish a sadness baseline. This approach
ensures three objectives: (1) mirroring real-world music
therapy scenarios where negative emotions are modulated;
(2) segregating induction (film) from regulation (music)
prevents overlap between emotion elicitation and intervention
mechanisms; (3) standardized valence and arousal levels
before music exposure isolate therapeutic effects, ensuring
observed outcomes reflect music-driven modulation rather
than baseline variability.
Scale We employed the Self-Assessment Manikin (SAM),
a well-known scale that the emotions are visually expressed
(Bradley & Lang, 1994), to measure the timely emotional

1https://www.udio.com/
2https://github.com/facebookresearch/audiocraft
3https://suno.com/
4https://www.stableaudio.com/generate
5https://www.songr.ai/
6https://github.com/archinetai/audio-diffusion-pytorch
7https://github.com/CarlWangChina/MuChin

state before and after the implementation of the stimulus.

Participants
The experiment recruited 22 participants (9 men and 13
women), between 20 and 30 years of age (Mean = 22.23,
SD = 2.70). All participants were regular music listeners
without professional film or music study backgrounds. The
first four participants were excluded as part of a preliminary
test, leaving 18 for the formal experiment. Before the
experiment, participants were given a detailed explanation of
the procedure but were not informed of the specific research
objective to minimize expectancy bias. Written informed
consent was obtained from all participants, and the study was
approved by the Ethics Committee of the relevant institution,
ensuring adherence to ethical guidelines.

Procedure
The experiment follows a 2 (music type: human-created,
AI-generated) × 3 (playback principle: ISO, reverse ISO,
random) design, consisting of six blocks within participants
(as shown in Figure 1, top right). The block order was
counterbalanced across participants using the Latin Square
design.

Before inducing negative emotions using a film,
participants were instructed to remain quiet for two
minutes to record EEG data from the resting state as a
baseline (Figure 1 C). The SAM scale will be used for pre-
and post-tests: the pre-test will be conducted following the
resting baseline period, and the post-test will occur after the
participant has listened to the final music track. After the
pre-test, the participants will watch a video clip to induce
negative emotions, followed by completing the SAM scale
to assess whether the intended emotional response has
been elicited. Subsequently, participants will listen to three
60-second music pieces according to block instructions,
with a SAM test conducted after each track to evaluate their
emotional state. This procedure will be repeated six times
per participant, corresponding to each condition, for a total
of 18 music tracks — 9 AIGM and 9 HMCM tracks.

EEG-Data Acquisition
The EEG signals for this experiment were acquired using
Curry9 and Eprime software, with a 64-channel Quik-Cap
headset (compatible with SynAmps 2/RT and Neuvo
amplifiers). The electrodes were arranged following the
international 10-20 system, and standardized procedures
were applied to ensure data reliability. Certain electrode
channels, such as CB1, CB2, EKG, EMG, and TRIGGER,
were removed as they provided no directly relevant brain
activity information. CB1 and CB2 are reference channels,
EKG and EMG record heart and muscle signals (used for
marking movement artifacts), and TRIGGER synchronizes
external devices, none of which were needed for this analysis.

EEG data were processed by first importing raw signals
and standardizing electrode locations (VEO, HEO, G). The
data were then re-referenced to M1 and M2 for noise
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Figure 1: (A) The procedure of selecting HMCMs as materials. (B) The steps to generate and filter AIGMs. (C) The procedure
of the experiment in one block. The table in the top-right illustrates the music playing order for each block under different ISO
conditions.

reduction, bandpass filtered (0.1-40 Hz) to remove drift and
noise, and sampled at 500 Hz for high temporal resolution.
Bad channels (e.g., P3) were repaired or interpolated, and
Independent Component Analysis (ICA) was used to remove
artifacts Homan et al. (1987). After ICA, the data were
reduced to 61 components, and artifact components, such as
eye muscle artifacts, were identified and removed based on a
correlation coefficient range of 0.9-1.

Data Analysis
Subjective Report To ensure data quality, we applied a
strict data filtering process to the final dataset. First, we
excluded data from participants who failed to show proper
arousal responses. The specific criteria for failure were that
both valence and arousal values were greater than 0. Emotion
valence and arousal data beyond three standard deviations
from a participant’s mean are excluded. This ensures
consistency in emotion induction within the participant. After
filtering, 18 experimental sessions were removed.

The results of the sphericity and homogeneity of
variance tests confirm that our data meet the ANOVA test
prerequisites. We conducted a two-way repeated-measures
ANOVA with a 2 (music type) × 3 (playback principle)
design to examine the effects of HMCM and AIGM,
as well as different ISO music playback principles on
emotion-focused therapy. This analysis focused on the
overall emotion-focused therapy process, as measured by
valence and arousal levels after listening to three musical
pieces, along with main effect testing. Subsequently, to
explore the influence of music type and playback principles
at different stages of the listening process, we performed the
same two-way ANOVA at each time point, including analyses

of main effects, interactions, and post-hoc tests.

EEG Data For the quantitative analysis of EEG data, six
brain regions (prefrontal, frontal, parietal, occipital, temporal,
and central) were selected according to the standard of 10-20
system (Homan et al., 1987). Besides the different brain
regions, we analyzed the different frequency bands (average
2 Hz delta band, 6 Hz theta band, 12 Hz alpha band, 22 Hz
beta band, 40 Hz gamma band) of the EEG result to figure out
the potential brain activity and response model. Descriptive
analysis and normality test were firstly examined. To focus on
the target hypothesis in multiple variables, the paired-sample
t-tests, with effect size (ES) analysis, were then conducted
to represent the different brain activity across regions and
frequency bands.

Results
Consistency Check of Self-Report and EEG Data
This study designs a classification task to investigate
the relationship between participants’ emotional valence
and arousal levels with their electroencephalogram (EEG)
signals. Emotional states are categorized into three labels
based on self-reported data: high (value > 0), neutral (value
= 0), and low (value < 0). The EEG data undergoes
preprocessing with baseline correction, followed by feature
extraction across all channels using a sliding window
approach (4-second window with 2-second step). Key
features include PSD, FD, and DE.

Four machine learning models—Random Forest (RF),
XGBoost (XG), Support Vector Machine (SVM), and
LightGBM (LG)—are employed, with the dataset divided
into 70% training and 30% testing sets. Results
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Figure 2: EEG topography of the Experiment. The full band column is the average result for all bands in different brain regions.

demonstrate acceptable classification performance across
models according to the state-of-the-art models. For valence
classification, LG achieves the highest accuracy of 65.23%
(RF: 64.78%, XG: 63.81%, SVM: 64.71%), while XG
outperforms others in arousal classification with 72.70%
accuracy (RF: 71.78%, SVM: 72.00%, LG: 71.71%). The
maximal accuracy difference between the two classification
tasks remains below 1.5 percentage points.

Different Intervention Effect in HMCM and AIGM

Main effects of music type (F(1, 17) = 25.5, p < .001, η2

= 0.600) and playback principle (F(2, 17) = 20.314, p <
.001, η2 = 0.705) were significant. Post-hoc tests of these
main effects revealed several key findings. In contrast, the
interaction effect between music type and playback principle
was non-significant, with no significant effects for Valence
(F(2, 34) = 0.614, p = 0.547) or Arousal (F(2, 34) = 0.952,
p = 0.396). To further compare the difference in HMCM
and AIGM, we selected only the first stage of music therapy,
as this stage was aligned after inducing negative emotions,
allowing for a direct comparison. Furthermore, due to
the design of playback sequence conditions, where Stage 1
involved negative music in the ISO principle condition and
positive music in the reverse ISO principle condition, we
can conduct additional analyses on emotional responses to
negative and positive music respectively.

Key Finding 1: All types of music can produce positive
emotional therapy effects. The results showed that all
types of music, regardless of their emotional tone, elicited
positive emotional experiences (Valence: t(17) = 6.309, p <
.001, ES = 1.487; Arousal: t(17) = 6.254, p < .001, ES =
1.474). This finding was further supported by EEG activity
in the prefrontal cortex, where significant differences were

observed across various musical conditions. Specifically,
human-created negative music (t(17) = 7.760, p < .001, ES
= 1.829), generative negative music (t(17) = 6.635, p < .001,
ES = 1.564), positive HMCM (t(17) = 7.789, p < .001, ES
= 1.836), and positive AIGM (t(17) = 3.691, p < .01, ES =
0.870) all elicited robust prefrontal cortex activity. Even with
random music segments, both groups demonstrated notable
effects: HMCM (t(17) = 6.907, p < .001, ES = 1.628)
and AIGM (t(17) = 5.228, p < .001, ES = 1.268). These
results indicate that participants were actively engaging in the
coordination and processing of emotions related to the music
(Dixon et al., 2017). Furthermore, the undifferentiated effect
of different types of music on negative emotional states is
consistent with previous research (Taruffi & Koelsch, 2014).

Key Finding 2: AIGM generally produced a greater
increase in arousal levels According to self-report data,
the AIGM group showed a significant increase in arousal after
listening to three pieces of music (t(17) = 2.406, p < .05, ES
= 0.567, see Table 1, as shown in Intervention Evaluation
stage), whereas the HMCM group did not (t(17) = 1.256, p
= 0.226 , ES = 0.296). EEG results revealed that AIGM led
to broader activation, particularly in the Gamma wave band
(Figure 2, column Gamma (2 Hz)). Specifically, significant
increases in Gamma activity were observed in the prefrontal
cortex (t(17) = 2.266, p < .05, ES = 0.534) and occipital
cortex (t(17) = 6.008, p < .001, ES = 1.416). According
to Tallon-Baudry and Bertrand (1999), high complexity or
intensity stimuli can induce more pronounced Gamma wave
activity in perceptual experiments.

Key Finding 3: Positive AIGM demonstrated superior
efficacy in producing positive emotional therapeutic
effects. When listening to the positive AIGM music (t(17) =
2.015, p = .01, ES = 0.687, see Table 1 - reverse ISO Principle
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Table 1: Analysis of Subjective Emotional Responses (Valence/Arousal)

Music Playing Principle ISO Principle Reverse ISO Principle Random Order

Music Type HMCM AIGM HMCM AIGM HMCM AIGM

Induction
Mean Difference -3.200 / -0.200 -2.000 / -0.889 -3.500 / -0.833 -3.333 / -0.667 -2.600 / -0.700 -3.125 / -1.625
Cohen’s d 0.810 / 0.010 0.429 / 0.145 0.751 / 0.100 0.696 / 0.080 0.571 / 0.091 0.636 / 0.298
p-value 0.003 / 0.967 0.086 / 0.547 0.005 / 0.677 0.009 / 0.738 0.027 / 0.704 0.015 / 0.223

Stage 1
Mean Difference 2.600 / 0.200 1.000 / 0.222 2.500 / 0.833 4.000 / 2.500 2.200 / 0.400 3.125 / 1.000
Cohen’s d 0.690 / 0.005 0.158 / 0.009 0.354 / 0.123 0.687 / 0.455 0.324 / 0.031 0.636 / 0.100
p-value 0.009 / 0.983 0.512 / 0.970 0.151 / 0.609 0.010 / 0.070 0.187 / 0.897 0.015 / 0.677

Stage 2
Mean Difference 0.400 / -0.400 2.111 / 1.556 2.000 / -1.833 -0.500 / -2.083 0.000 / 1.200 1.125 / -0.125
Cohen’s d 0.018 / 0.020 0.374 / 0.176 0.247 / 0.349 0.017 / 0.347 0.000 / 0.171 0.141 / 0.001
p-value 0.940 / 0.933 0.131 / 0.465 0.309 / 0.157 0.943 / 0.159 1.000 / 0.478 0.558 / 0.997

Stage 3
Mean Difference -0.600 / 1.800 0.000 / 0.889 -2.167 / 2.333 -0.750 / -0.833 0.900 / -1.700 -0.375 / 0.500
Cohen’s d 0.021 / 0.325 0.000 / 0.066 0.333 / 0.434 0.003 / 0.130 0.087 / 0.284 0.016 / 0.014
p-value 0.930 / 0.186 1.000 / 0.783 0.176 / 0.083 0.990 / 0.588 0.717 / 0.245 0.947 / 0.953

Intervention Evaluation
Mean Difference 2.400 / 1.600 3.111 / 2.667 2.333 / 1.333 2.750 / -0.417 3.100 / -0.100 3.875 / 1.375
Cohen’s d 0.340 / 0.296 0.669 / 0.567 0.389 / 0.235 0.395 / 0.042 0.609 / 0.002 0.703 / 0.134
p-value 0.167 / 0.226 0.011 / 0.028 0.117 / 0.333 0.112 / 0.861 0.019 / 0.993 0.008 / 0.577

with positive emotional music in ths stage), participants
showed a more significant improvement in emotional valence
compared to HMCM (t(17) = 1.502, p = 0.151, ES = 0.354),
with the difference between the two being substantial (t(17)
= 7.675, p < .001, ES = 1.809). The EEG findings offer
further insight into these results (Figure 2). In response
to positive music, the temporal lobe activation induced by
(Mean Difference [MD] = 21.472) was significantly greater
than that triggered by HMCM (MD = 19.828), with the
difference being statistically significant (t(17) = 4.696, p <
.001). The increased temporal lobe activity associated with
positive AIGM may suggest that is more effective in eliciting
positive emotion (Adolphs et al., 2002).

Key Finding 4: Negative HMCM showed better positive
emotional therapeutic effects. When paired with negative
emotions, HMCM (t(17) = 2.927, p = 0.009, ES = 0.690,
see Table 1 - the ISO Principle with negative music in
the first stage) resulted in a greater increase in emotional
valence compared to AIGM (t(17) = 0.670, p = 0.512, ES
= 0.158), with the difference being statistically significant
(t(17) = 5.897, p < .001, ES = 1.390). Interestingly, the
EEG effects observed in positive music were not present in
negative music; instead, the pattern was reversed (t(17) =
1.207, p = 0.240). These findings suggest an interaction
between the intended emotional expression of the music and
the music type (i.e., HMCM and AIGM) on the therapeutic
effect.

Difference between ISO Principle Adherence and
Non-adherence
Key Finding 5: AIGM, like HMCM, demonstrated
superior emotional therapeutic effects when adhering to

the ISO principle. For both AIGM and HMCM, when
adhering to the ISO principle, participants’ arousal was
significantly improved than the non-adherence conditions
(while no significant differences were observed in valence).
At the third stage, the main effect of the ISO principle
was highly significant (F(2,17) = 29.788, p < .001, η2 =
0.778). Post-hoc analyses showed that the ISO condition
resulted in significantly greater effects compared to both
the reverse-ISO condition (MD = 1.171, p < .01) and the
random condition (MD = 0.806, p < .05). Across the
entire intervention process, a marginal main effect of the
ISO principle was identified (F(2,17) = 3.033, p = 0.075,
η2 = 0.263). Post-hoc comparisons indicated that the ISO
condition showed a moderate difference compared to the
reverse-ISO (MD = 1.318, p < .001) and random condition
(MD = 0.694, p < .05).

Discussion
Underlying Neural Mechanisms of Music Therapy
This study is the first to explore the neural mechanisms of
AIGM and HMCM in emotion-focused therapy. Consistent
with previous studies, we observed that both AIGM and
HMCM effectively improved emotional states, accompanied
by significant activation in the prefrontal cortex, aligning with
their role in emotion-focused therapy and cognitive control
(Dixon et al., 2017). In contrast, positive AIGM induced
stronger temporal lobe activation than human-created
positive music, correlating with higher emotional valence
enhancement (Adolphs et al., 2002). Additionally, across
the overall therapeutic process, AIGM significantly increased
arousal levels, as evidenced by heightened Gamma-band
activity in the prefrontal and occipital regions, indicating
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enhanced perceptual engagement (Tallon-Baudry & Bertrand,
1999). Additionally, applying the ISO principle with AIGM
and HMCM both demonstrated a significant main effect on
arousal levels, particularly in stage 3 and across the entire
therapeutic process. This suggests that the ISO principle,
regardless of whether the music was AIGM or HMCM,
outperformed both the reverse ISO and random conditions
in enhancing arousal, highlighting its superior efficacy in
regulating emotional states.

Acoustic Characteristics Differences Between
AIGM and HMCM
To interpret the therapeutic effect difference between AIGM
and HMCM, we further analyze the acoustic characteristics
of two kinds of music.

First, for chroma variance and rhythmic complexity, AIGM
exhibited lower average values for negative, neutral, and
positive music as follows: chroma variance of 0.3044,
0.2607, and 0.3170 (compared to 0.3612, 0.3021, and
0.3545 for HMCM), and rhythmic complexity of 0.7351,
0.5240, and 0.6985 (compared to 0.3560, 0.4099, and
0.4590 for HMCM). Pervious studies highlight this kind
of harmonic stability in promoting relaxation (Bogatyrenko,
2024; Saarikallio, 2008). The consistent harmonic structure
and predictable rhythms of AIGM likely contribute to its
ability to evoke more immediate and positive emotional
responses. This suggests that AIGM’s emotional attributes
are more direct and pronounced, making it particularly
effective in therapeutic contexts that rely on sequential
emotional transitions. These differences are closely
related to AIGM’s superior short-term arousal enhancement.
Participants frequently described AIGM as “harmonious”
and “calming”, supporting its role in rapid stress reduction.
In contrast, the complex rhythmic structures and timbral
contrasts in HMCM are likely to evoke more complex
or profound emotional reactions, which may also delay
immediate emotional improvement, as the listener’s cognitive
processing of the music’s intricate features requires more
time.

Second, spectral centroid (SC), a key indicator of timbral
brightness (Wun et al., 2014), further differentiated the
emotional effects of the two music types. The SC values for
AIGM and HMCM in negative, neutral, and positive music
are as follows: Negative (AIGM 457.569, HMCM 1009.169),
Neutral (627.527, 558.906), Positive (896.773, 1006.584).
Negative HMCM exhibited significantly higher SC values
than negative AIGM, aligning with participants’ immediate
valence elevation after listening to human-created negative
tracks. This finding resonates with prior research showing
that brighter timbres in HMCM are more effective in eliciting
rapid emotional shifts (Ryczkowska, 2022). However, the
higher SC in negative HMCM may also indicate that it does
not fully conform to the typical characteristics of negative
music, which are often associated with darker, more subdued
timbres. This discrepancy could explain why negative
HMCM elicited more positive emotional responses, as its

brighter timbre may have inadvertently shifted the emotional
tone toward a more neutral or positive valence.

Insight for Using AIGM in Emotion-focused
Therapy
Based on the findings of this study, AIGM demonstrates
therapeutic efficacy comparable to HMCM in music
therapy. Notably, as indicated in Key Finding 2, AIGM
elicits significantly stronger arousal responses. Moreover,
regarding the therapeutic effects across different types of
emotional music, positive AIGM produces more pronounced
therapeutic outcomes (Key Finding 3). While negative AIGM
exhibits less positive therapeutic effects compared to negative
HMCM (Key Finding 4), this might inversely validate that
negative AIGM evokes stronger negative emotional responses
than HMCM. Therefore, our findings suggest that AIGM
not only meets quality standards but also demonstrates more
pronounced emotional attributes. Future music therapy
practices could consider the appropriate incorporation of
AIGM in suitable therapeutic contexts.

Limitation and Future work
While this study provides valuable insights into the neural and
emotional effects of AIGM and HMCM in therapy, several
limitations should be acknowledged. First, our findings may
be limited to the selected human piano pieces and specific
AI models used. Future studies should expand the music
sample scope to verify the generalizability of these results.
Second, as participants were East Asian, cultural influences
may affect our findings. Research with diverse cultural
backgrounds is needed to examine potential cultural effects.
Third, our conclusions are constrained by the relatively small
sample size and limited diversity of participants; future
research should recruit larger cohorts and include participants
from different cultures, age groups, and other demographic
backgrounds to enhance external validity. Furthermore, the
present study examined immediate therapeutic effects only
following negative emotion induction. Future investigations
should extend to examining emotional responses across
diverse emotional baselines and validating longitudinal
therapeutic efficacy.

Conclusion
This study explores the effects of AIGM and HMCM in
emotional therapy. The results show that AIGM demonstrates
a more significant effect on increasing arousal levels. In the
context of positive emotional music, AIGM is more effective
in promoting positive emotional therapeutic effects compared
to HMCM, while HMCM shows better emotional regulation
effects in the context of negative emotional music. Moreover,
when music adheres to the ISO principle, both AIGM
and HMCM exhibit significant improvements in therapeutic
outcomes. In sum, for the first time, this work reveals the
neural activities induced by AIGM through EEG analysis and
validates its unique effects under the ISO principle. It lays a
solid foundation for future in-depth research in this area.
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